
JOURNAL OF COMPUTATIONAL PHYSICS 5, 244-264 (1970) 

Variable Mesh Multistep Methods 
for Ordinary Differential Equations* 

RODNEY VAN WYK 

North American Rockwell Corporation, Rocketdyne Division, Canoga Park, California 91304 

Received April 1, 1969 

A multistep predictor-corrector method for the numerical solution of ordinary 
diffemntial equations is developed. The difference equations employed are genemliza- 
tions, for the case of variable mesh spacing, of previous formulas requiring hxed step 
size. In addition to retainii the high local accuracy of the earlier methods, the variable 
mesh method is developed in a form conducive to the generation of effective criteria 
for the selection of subsequent step sizes in the step by step solution of differential 
equations. These criteria are based on considerations of truncation error, convergence 
of corrector iterations, and an extensive treatment of relative numerical stability. The 
algorithm has been tested extensively and compared with other methods. The results 
of the comparison favor the new method. An application of the method to a heat transfer 
problem is discussed. 

1. INTRODUCTION 

A great deal of research effort has been directed toward the numerical solution 
of first order nonlinear ordinary differential equations because of the practical 
importance of such problems. The most widely used numerical methods that have 
been developed for these problems provide approximate values of the solution at 
discrete points according to a stepwise computation beginning at an initial point 
for which the solution is known. These methods are called one-step methods if the 
calculation of the solution at a given point depends explicitly on values of the 
solution and one or more of its derivatives at only one previous point. Multistep 
methods require values at two or more previous points. One-step (Runge-Kutta) 
methods are very convenient because the step increments can be changed readily 
from step to step as desired and because the solution in the initial steps is calculated 
with the same formulas as used in subsequent steps. Multistep methods, although 
less convenient, are usually more efficient because, by making use of the calcula- 
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tions of more than one previous step, less computer time is required to achieve the 
same accuracy as achieved with a one-step method. 

The research reported here was directed toward the development and testing of 
variable mesh multistep methods which not only preserve the efficiency due to the 
multistep structure but improve this efficiency by permitting as much freedom in 
the variation of the step increments as is afforded by one-step methods. Care was 
taken to formulate the basic difference equations in a manner conducive to the 
development of effective criteria for selecting the variable mesh increments as the 
calculation progresses. In the following pages, the basic algorithm is described and 
the analysis and practical considerations justifying the mesh criteria are presented. 
The mesh criteria were subjected to extensive numerical testing, and in addition, 
the algorithm was compared with known methods in the numerical solution of 
selected differential equations. The results of this and other experimental work are 
summarized in later sections. 

The problem of starting the computation, that is, the requirement of com- 
puting the solution at the first few points by a separate technique, in order to 
initialize multistep methods, is not emphasized here for two reasons. First, because 
of the variable mesh formulation, the calculation is only initialized once and never 
has to be restarted as would be required in changing the step size while using a 
fixed step size, multistep method. In the second place, fairly general starting 
procedures are readily available for incorporation with the variable mesh method 
because the step increments used in the starting procedure can be smaller than those 
used in the subsequent calculations. For example, the starting procedure outlined 
in [l] for the variable mesh method consists of simply using the one-step Adams- 
Bashforth/Adams-Moulton formulas for the tist step, the two-step formulas for 
the second step, and the three-step formulas for third step. The same step size is 
used for each of these three initial steps, and it is chosen small enough to yield the 
desired accuracy at the fist point. There is little danger of exceeding this error at 
the second and third points since higher order formulas are used. 

2. VARIABLE MPSH MULTISTEP FORMULAS 

The initial value problems considered are represented by differential equations 
of the form 

dyldx = 10(x, Y>, (0 

with initial condition y(xJ = yO . Equation (1) represents a single differential 
equation; however, some special considerations required for systems of differen- 
tial equations will also be given in the sequel. It is assumed at the outset that F is 
continuous and satisfies the Lipschitz condition that guarantees the existence of a 



246 VAN WYK 

unique, continuous and differentiable solution ([2], p. 15). The continuity of 
higher derivatives will be required later in the discussion of truncation error. 

We will use the usual notation in which y, denotes the computed value of 
y(x,) and yn’ denotes 8(x,, y,). It is assumed that the computed solution is 
obtained recursively by one or more formulas of the following type: 

Y n+1 = UoYn + %Yn-1 + Q,Yn-2 + a3Yn-3 

+ w-,Y;+, + boy,’ + b,Y:-l+ b,Yh-2 + b,Y;-,). 

Here h denotes the current step size, x,+r - x, , and is permitted to vary with n. 
The coefficients ai and bi are also variable and it will be convenient later to express 
them in terms of mesh parameters IX, /3, and y defined by 

and 

a = c&L - x,-1)/~, 

p = (x, - &-2)/h, (3) 

We require y > /I > ci. 
We will restrict the present discussion to fourth order methods-that is, methods 

with error terms proportional to the fifth power of h. The optimum order to use in 
a given application depends heavily on the degree of accuracy desired, but fourth 
order is a reasonable compromise for medium range accuracy-say two to six 
significant figures. With fixed step size, it is often desirable to vary the order 
within a given application in order to maintain a desired accuracy. The variable 
mesh procedure, on the other hand, has the advantage of achieving the same 
objective without switching from formulas of one order to those of another. 

Both explicit (predictor) and implicit (corrector) variable mesh formulas are 
used. The explicit equation has b-, = 0, while the implicit usually can be solved 
by iteration. The coefficients in (2) for the two formulas are determined as follows: 
By requiring exactness for F(x, y) = 0, the relation a0 + a, + a2 + a, = 1 is 
imposed. Because of the known advantage in numerical stability (for the case of 
fixed step size) resulting from the choice a, = 1, a, = a2 = a, = 0 (as in Adams- 
type formulas), we make the same choice for the more general variable mesh case. 
Requiring exactness also for y = x - x, ,4(x - x,)~, )(x - x,J3, and $(x - xJ4, 
the bi of the predictor 

Y n+1 = yn + N,y,’ + b,L, + b,y;-, + b&-s> (4) 
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are determined recursively as follows: 

b 
3 

= 2(2 + 34@ + a) + 3(1 - 24 
12~47 - a@ - y) ’ 

b 
2 

= 2+3a:-ti&y(Y--or)b3 

63@ - 4 ’ 

bl = - (1 + 2yb3 + 2/?b3)/2a, 

b, = 1 - b3 - b2 - bl . 

Similarly, a corrector of the form 

(5) 

(6) 

is found with coefficients 

d2 = 12/l( 1 y$ - a) ’ 

39 + 1 
” = - 12a( 1 + a)@ - a) ’ 

4 = ii - 40 + 8) - 4(1 + a); 
d-1 = 1 - d, - dl - do . (7) 

For the special case of fixed step size where a, /3, and y have the constant values of 
1,2, and 3, respectively, the above predictor and corrector formulas reduce to the 
widely accepted Adams-Bashforth and Adams-Moulton formulas, respectively. 
In this connection one is reminded of the formulas presented by Nordsieck in a 
paper which, like the present paper, also emphasizes the advantages of changing 
step size [3]. Although the algorithm of Nordsieck is substantially different from 
that presented here, it is similar in the sense that his basic integration formulas are 
equivalent to the Adams formulas. However, the formulation used by Nordsieck 
appears to be much less conducive to the development of effective mesh selection 
criteria than is the formulation presented above. This claim is corroborated by 
evidence obtained when both methods, complete with their respective recom- 
mended mesh selection criteria, were applied to selected differential equations. (This 
work is described in more detail in a later section.) This deficiency of the Nordsieck 
method may result from Iris assumption of “fixed point” operations rather than 
the more commonly used “floating point,” as also is suggested by Lewis and 
Stovall [4]. 
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Assuming continuous higher derivatives of F(x, y), it is evident upon comparing 
Eq. (4) with an appropriate Taylor Series representation for y(x,+& that the trun- 
cation error in (4) can be represented as 

P,(h5/5 9 Y,” + W), 

where the coefficient P, depends on CY, t?l, and y. If we consider the residual error 
resulting from the application of (4) to the polynomial (x - x,J5, we find that 

P, = 1 - 5(b,a4 + b,p4 + b,y4) 

= 1 + 5[3(01 + B + y) + 4(&3 + TJ + ,&) + 6c&W2. 
(8) 

Similarly, if the error in (6) is taken in the form 

C,(h5/5 9 Y,v + OW), 
C, is found to be given by 

c, = 1 - 5(d-, + &X4 + d&4) 

= 1 - 5(3 + 2@./3 + 01 + fl)/l2. 
(9) 

Various alternative modes of utilization of the predictor and corrector formulas 
are available in practice. For example, the predictor can be used without employing 
the corrector at all. On the other hand, if the corrector is used, it usually is used 
iteratively, with the predictor providing the first guess. Qualitatively, some of the 
arguments for and against the various alternatives are as follows: 

(a) Number of Derivative Evaluations Per Step 

The “predictor-only” mode requires only one evaluation per step. If one correc- 
tion is employed, a second evaluation is usually made after the correction to 
enhance numerical stability. In general, n corrections require either n or n + 1 
derivative evaluations, depending on whether a final evaluation is or is not carried 
out. Evaluations of complicated derivative functions freqeuently require a pre- 
dominant portion of the total computer time. 

(b) Truncation Error 

Implementation of the corrector reduces the truncation error. (It is a simple 
exercise to show that 1 C, 1 < 1 P, I .) 

(c) Numerical Stability 
With regard to both absolute and relative stability, the regions of stability become 

less restrictive as the number of correction-evaluation iterations is increased. 
Incidentally, these regions become more restrictive as order is increased. 
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(d) Availability of Mesh Criteria 

More effective procedures for automatically selecting the mesh increments can 
be developed for some modes than for others. This consideration favors a predio 
tor-corrector mode with at least two applications of the corrector. 

An empirical program was carried out whereby the various modes were com- 
pared in the actual numerical solution of selected differential equations. The mesh 
increments were selected in a manner such that the total number of derivative 
evaluations was the same for each mode. This work is not reported in detail here 
since an even more extensive testing program of a similar nature for the case of 
fixed step size was carried out and reported in detail by Hull and Creemer [5]. 
Their conclusions, favoring the mode p-d-c-d-c, are in agreement with those 
reached in the present study. (Here p denotes predictor, d derivative evaluation, 
and c corrector.) Consequently, the discussion in the remaining sections will be 
directed primarily toward this mode. 

3. NUMERICAL STABiLlTY FOR SINGLE D~PPWENTUL ~UATIONS 

First note that each corrector iteration is performed according to the equation 

C(‘+‘) = yn + hd_,F(x,, , c!$) + h f d y’ - n+l *=. f 9&f' 

where the superscript k denotes the k-th iteration. Subtracting this equation from 
(6), and employing the mean value theorem gives 

where 

for some 7 between yn+l and cAy1 . Thus, the following condition is required for 
convergence of the corrector iterations: 

IAl-11 <l. (11) 

It is assumed that condition (11) is satisfied in the following discussion, and, in 
fact, this condition will be used in the mesh selection procedures described in the 
next section. 

It is also assumed for the purpose of the numerical stability analysis that A is 
constant, a standard assumption in the literature for fixed step size. By appropriate 
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choice of h at each step, A can be made nearly constant in the variable mesh case. 
In practice, however, this assumption is usually violated with fixed mesh methods, 
even when procedures to frequently double or halve the step size are included. 
Furthermore, when numerical stability is the controlling factor, it is good policy 
to keep h as large as possible without forcing h beyond its limitation imposed by 
the threat of instability. Thus, in this case, the mesh increments used are actually 
considerably suboptimal at most steps with fixed mesh methods. On the other hand, 
the variable mesh feature obviously allows much better optimization when the 
integration is stability limited. Of course, when it is not stability limited, variations 
in h are inconsequential- 

Initially, let us consider the mode which employs a prediction and k corrections 
with a derivative evaluation after each prediction and correction. Let E, denote 
the propagated error, r(Xn) - c, . “’ Then it can be shown that e, satisfies the 
difference equation 

c n+1 = 1 + i: hjd:;l(d, + d-,) + h”+‘df,b, 
i-l I 

except for the fifth order truncation error. The effect of the predictor on the pro- 
pagated error decreases with increasing k because the factor (MQk multiplies the 
bi in the above equation. In the limit, the corrector alone determines the error 
propagation, the equation being given by 

En+l(l - M-1) - 4,(1 + M,) - E,-& - E,-*Adz = 0. (12) 

In practice, when the mesh increments are small enough to provide a reasonably 
small truncation error, the corrector iterations beyond the second are essentially 
redundant. Hence, the above difference equation for the propagated error in the 
corrector alone is adequately representative, for practical purposes, of the error 
propagation for the recommended mode, p-d-c-d-c. 

If the difference Eq. (12) has constant coefficients, its solution E, can be expressed 
in terms of the roots pi of the polynomial equation 

p3(1 - AL,) - p2(1 + &) - PM, - Ad, = 0 (13) 

by E, = kAa + k$2m + khn (slightly modified in the case of a multiple root), 
where the ki are constants. Equations (12) has constant coefficients as requited 
provided the 4 are constant, as well as A. The di are constant in the case of fixed 
mesh. In the variable mesh case, it is this investigator’s experience that the dt vary 
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very slowly when the integration is stability limited. This is due to the fact that the 
ratio a of mesh increments from step to step remains nearly constant, and the di 
are constant when the mesh parameters a, /I, and y are constant. (When a is con- 
stant, fi and y are the constants a + a2 and a: + a2 + aa, respectively.) Thus, it 
is reasonable to add the assumption of constant di , for the purposes of the stability 
analysis only, and in view of the above remarks it becomes convenient to treat 
numerical stability in terms of the two parameters h and a. 

When h = 0, the fundamental root of the characteristic Eq. (13) is unity and the 
others are zero. When A # 0, one or both of the latter roots may become larger in 
modulus than the fundamental root. This is a condition of relative numerical 
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FIG. 1. Regions of stability and cm- of corrector iterations of variable mesh method. 
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instability [6], whereas absolute numerical instability occurs whenever any root is 
greater than one in modulus or when a root of unit modulus is a multiple root. 
Applying these conditions as definitions, regions of both relative and absolute 
stability have been computed by trackiig the roots of (13). These regions are shown 
in Fig. 1 in terms of the parameters h and 0~. Although it is interesting to note the 
behavior for very large and small a, in practice a actually remains fairly close to 
unity. Also shown in Fig. 1 are the curves hL1 = f 1, which indicate the region 
for which the corrector iterations converge, and within which the stability regions 
have meaning. 

4. NIJMERICAL STABILITY FOR SYSTEMS OF DIFFERENTIAL EQUATIONS 

The variable mesh formulas are applicable for systems of differential equations 
of the form 

dy(“/dx = F&x, y(l), y(2) ,..., y(N)), i = 1, 2 ,..., N. (14) 

In considering numerical stability for this case, Eq. (12) for the propagated error 
is replaced by 

(Z - d-lhG) Efi+l - (I + &hG) En - dlhGzn, - d$tG& = 0, (15) 

where & denotes the vector with components y(i+$ - y(“. Z is the identity matrix 
and G is the Jacobian matrix with elements Gi* = aI;ilay(‘) which are assumed 
constant, as in the case of a single equation. A cursory analysis of numerical 
stability is available through consideration of a characteristic polynomial corre- 
sponding to a majorization of Eq. (15). However, a more detailed approach 
involving the eigenvalues of the matrix G has been pursued in the present study. 

Pre-multiplying Eq. (15) by a matrix T, representing a nonsingular linear trans- 
formation such that TGT-l = J is in canonical form, gives 

(I- d-&J) %+I - (I+ d,W ?I,, - 4@%-1- d&Jrs,-z = 0, (16) 

where jj,, = TC,, . The diagonal elements of J are the eigenvalues of G, and if these 
are distinct, all the off diagonal elements of J are zero. In this case, the system of 
difference equations for the propagated errors becomes uncoupled in passing 
from (15) to (16), and the relevant characteristic polynomial equation is again 
given by (13), with X taking on the values hJii . If the eigenvahtes of G are not 
distinct, the analysis is more complicated, as indicated in [l], but the results are 
essentially the same. In either case, however, Fig. 1 is inadequate because some 
of the Jii WY have nonzero imaginary parts. 

It is easy to show that the zeros of any polynomial whose coefficients are them- 
.selves polynomials in a complex variable X are the complex conjugates of the zeros 
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of the same polynomial with h replaced by its conjugate. Thus, we need only track 
the roots of (13) for values of r\ with positive imaginary parts, the regions of 
numerical stability in the lower half of the h plane then being given by symmetry. 

The problem of determining regions of stability for fixed OL has, thus, been 
reduced to computing the roots of (13) for incremental values of h in the upper 
half J plane and deciding at each point whether or not we have stability according 
to some appropriate definition involving the roots. We will limit ourselves to 
relative stability. 

Choosing a definition of relative numerical stability presents an interesting 
situation. (We ignored this situation in the case of a single differential equation. It 
was present but rather inconsequential.) One would like a definition which not 
only provides a unique decision regarding stability at each point but also reflects 
one’s intuitive notions of relative stability. For example, it is distressing to find it 
possible to pass repeatedly back and forth from stability to instability as 1 h 1 
increases along some specified path. Two definitions were considered in the present 
study-one an extension of the Ralston definition used above for single differential 
equations, and the other a definition used by Crane and Klopfenstein [7] and also 
by Krogh [8]. Both definitions lead to meaningless relative stability boundaries for 
fairly large complex h. As a practical matter, however, it should be remembered 
that numerical stability is irrelevant for sufficiently large h since either the trunca- 
tion error becomes prohibitively large or convergence of the corrector iterations is 
not obtained. 

The generalization of Ralston’s definition to apply to systems was considered by 
Lea [9]. Lea defined the principal root of the characteristic polynomial equation as 
the continuous function of h satisfying the polynomial equation and taking on the 
value unity at h = 0. All others were called extraneous. Actually, however, this 
“definition” fails to distinguish between the principal and extraneous roots 
because two of them may satisfy the requirements of the principal root. The follo- 
wing example illustrates this deficiency and further illustrates the inability to 
decide between stability and instability for a particular value of A. 

For OL = 1 (fIxed step size) the three roots of Eq. (13) are shown in the p plane 
(Fig. 2). The values corresponding to h = (- 1,2) are indicated by circles. Moving 
from the origin in the h plane counterclockwise around the rectangle to (- 1,2), 
the roots proceed in the p plane from the points (1, 0), (0, 0), and (0,O) to the 
circled points along the paths indicated by the arrows. The point h = (- 1,2) 
appears stable according to the Lea definition since the root which started at (1,O) 
is the largest. However, as we continue around the rectangle in the h plane, we see, 
upon returning to the origin, that the root which started at (1,O) is now at (0, 0), 
while one of the roots which started at (0,O) is now at (1,O). In other words, if we 
had proceeded &&wise in the r\ plane, the point A = (- 1,2) would appear 
unstable. 
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Im 
P-plane 

FIG. 2. Example of ambiguity in relative stability definition. 

This problem does not develop with small h; that is, when we consider a some- 
what smaller rectangle the roots return to their starting points. On the other hand, 
the problem does preclude a complete partitioning of the h plane into meaningful 
regions of stability and instability by this procedure. 

The alternate definition does uniquely partition the h plane into regions of 
stability and instability, but these regions are not acceptable for large h. The prob- 
lem here, although not recognized in either [7] or [8], is the one mentioned 
earlier of alternating between stability and instability as h increases. According to 
this definition, a method is relatively stable if the modulus of each of the roots, 
other than the one nearest exp(@, is less than or equal to exp[Re(h)], with equality 
permitted for simple roots only. 

To illustrate the problem with this definition we note first that for a = 1, the 
roots of Eq. (13) go from the “source points” (1, 0), (0, 0), and (0, 0), to the “sink 
points,” approximately (-2.37,0.0), (0.13, -0.17), and (0.13, +0.17), not neces- 
sarily respectively, as A goes from the origin to infinity along any path in the 
h plane. Consider now, for example, A moving along the real axis to (0.5,O.O) and 
then vertically to infinity. For the vertical portion, exp(h) traverses again and again 
the circle in the p-plane with radius exp(0.5) and center (0,O). Eventually, when 
the three roots are sufhciently close to their sink points, they are each nearest, 
exp(A) for a portion of each cycle of exp()c). Thus, by definition, the method is 
relatively stable for the portion of each cycle when the root near (-2.37,0.0) is 
the closest to exp@) and unstable otherwise. In this manner, on the vertical line 
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Re(h) = 0.5, we have stability up to Im(h) = 3.0, then instability to about 8.3, 
stability again to about 9.9, etc. 

Since the second definition has the practical advantage that its application is 
independent of path in the A plane, and since the problem just noted apparently 
occurs only for excessively large h, there is no practical difficulty in its usage: one 
simply ignores stable regions lying “outside” unstable regions. 

Consequently the results shown in Fig. 3 were obtained by applying the second 
definition. The two definitions give very similar results for small X and reasonable 
values of cy, say $ < 01 < 4. 

1teratimuconvuge -- 

Relatively Stable - 

1 2 3 Re.(i) 

FIG. 3. Regions of relative stability and convergence of corrector iterations of variable 
mesh method for systems of differential equations. 

Also shown in Fig. 3 are the curves I M-, I = 1. In a manner analogous to the 
case of a single differential equation, it can be shown that for the dominating eigen- 
value of the Jacobian matrix of the system, the condition I Ml j < 1 is necessary 
for convergence of the corrector iterations. 

5. CRITERIA FOR SELECTING MESH INCREMENTS 

An algorithm for the solution of differential equations by variable mesh proce- 
dures would be incomplete without a reasonably sound, general purpose criteria 
for deciding what step size to use at each step of the integration. The main informa- 
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tion required for specifying effective criteria was developed in the previous sections. 
In essence, the mesh selection procedure discussed below represents an attempt to 
choose each step size just small enough so that the following three criteria are 
satisfied in the numerical solution of single differential equations: 

(a) The relative truncation error must remain within a prescribed tolerance 6. 

(b) The condition for convergence of the corrector iterations must be satisfied. 

(c) The method must possess relative numerical stability. 

tit P*+~ and G+~ denote the predicted and final corrected approximations for 
Y(Xn+lJ IAH = x,+2 -x,+1 be the step size to be used in computing the solution 
at x,+2 , and let at be the new value of (Y as determined by the truncation error 
criterion in a manner described below. (Thus, from the truncation error criterion 
we will get H = h/a, .) 

Using the truncation error terms for the predictor and corrector formulas 
obtained in Section 2, we can eliminate the factor (hs/5!) JJ,~ and obtain, through 
tlfth order in h, the equation 

Y(x,,l) - GA+1 = ( 
G&+1 - Pa+1 

P, - c, ) C 
*’ 

where P,, and C, are given by Eqs. (8) and (9), respectively. We want to find at such 
that the relative error in c,,,~ is 6, that is, 

IY(&+2l - cn+zl = 6 IY(&+2)1 * 

In practice, we actually set 

GI+1 - Pm+1 

pm - G 

giving 

1 wn, - Pm+3 liS 
at = Sc,,(P, - C,) I ’ G, # 0. (17) 

If C,,l = 0, absolute rather than relative truncation error must be considered, the 
allowable tolerance depending on the range of the machine. 

Criteria b an c above are combined to produce a single value 01, for the mesh 
parameter o! at the new step. To this end, we solve H = h/a, simultaneously with 
expressions approximating the boundary of the intersection of the regions of 
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relative stability and iteration convergence shown in Fig. 1. For this purpose, the 
following expressions have been found to fit the boundary data accurately: 

liy < 0: 0 < a?, < .25: HFv = -33.2~1:‘~ 
.25 < a0 < 1.0: Hr;, = .I7 - 1.09~~~ 
1.0 < OL, < co: HFv = ~.O~/CY, - 2, 

Fy > 0: 0~~ < .25: not permitted (see Fig. 1) 
.25 < a0 < 1.0: HFv = $[2 + (1 - +)‘/*I 

1.0 < oLc < co: HF,=2+$. 
0 

An approximation for I;;, can be obtained from computations from the completed 
step 

For the case Fv > 0, .25 < 0~~ < 1.0, an iterative scheme is used to solve for a,: 

&+l) = 3hFv 
c 8 + 4(1 - &))7/4 * c 

It has been determined (by actual calculations) that with CY~” = hF,/3, a:‘) is 
always correct to within two units in the second decimal place. Thus, 01~ is com- 
puted according to the following simultaneous solutions of each of the above 
equations with the equation H = h/so: 

-co < hF, < -.92: a, = (1.08 - hF,,)/2, 
-.92 < hF, B -.025: a, = (.17 + d.03 - 4.36hFJ2.18, 

-.025 < hF# < 0: (II, = (-hF,,/3.2)2/7, 
0 < hFw < .875: a, = .25, 

A75 < hF, < 8/3: ac = 3hF,,/[8 + 4(1 - hF,/3)‘/*], 
813 < hF, < co: a, = (hF, - 2/3)/2. 

The new step size H can then be taken as h/or, where cz = max(a, , 0~~). Although 
this policy has proven satisfactory in practice, it is possible that it could produce a 
new step size which is substantially different from the preceding one (but not 
likely because of the contracting character of the hfth root), and this in turn could 
result in a subsequent loss of accuracy. Therefore, the writer recommends the 
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addition of a precautionary restriction, such as 6 < o[ < 8, using a smaller or 
larger interval depending on the requirements of the particular problem being 
solved. 

Experience indicates that when even only a moderate degree of accuracy is 
required, the numerical solution of most problems is limited by the truncation 
rather than the stability (or convergence of the iterations) criterion. Of course, it 
may be that the truncation criterion is limiting the step size by detecting numerical 
instability of the predictor; we know, for example, that the numerical integration 
of stiff equations is limited by stability. At any rate, when we begin to examine 
mesh criteria for large systems of differential equations, it is fortuitous that satis- 
fying the truncation error criterion usually precludes instability because, in this 
case, the truncation criterion may be the only one which can be feasibly incorpo- 
rated into the algorithm. For large systems, the amount of computing time required 
to evaluate either the Jacobian matrix G or its eigenvalues at each step would 
usually be prohibitive. Of course, for certain small systems it may not be pro- 
hibitive, and then the results shown in Fig. 3 can be incorporated in a manner 
analogous to that given above for obtaining 01~ in the case of a single differential 
equation. This procedure has proved successful for selected systems although it 
did not alter the mesh increments substantially from those selected by the trunca- 
tion criterion alone when reasonably small values of S were used in the latter 
criterion. 

The mesh selection procedure recommended for most large systems, thus, con- 
sists of using only the truncation error criterion. Values of cQ are computed from 
Eq. (17) for each component of the system, and then a is set equal to the fifth root 
of the largest of these. 

6. NUMERICAL TESTING AND COMPARWN WITH OTHER METHODS 

The variable mesh multistep method has been tested by applying it to several 
single differential equations and to several systems of differential equations. This 
testing has given a fairly thorough demonstration of the effectiveness and reliability 
of the algorithm. One system of substantial importance for which the variable 
mesh approach proved especially effective was the heat transfer problem discussed 
in the next section. Another system, discussed in [lo], was a stochastic model of 
enzymatically controlled cooperative unwinding and template replication of 
biological macromolecules. Several simpler test problems are listed in Table I. 

Most of the test problems in Table I were selected because of their inherent 
potential, both in the behavior of the solutions and in the behavior of the partial 
derivatives of the right sides with respect to the dependent variables, for producing 
numerical difficulties. Some are particularly suited to a variable mesh treatment 
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while others, nos. 5, 6, 10, and 11 can be solved efficiently with constant mesh 
increments. In the latter cases, it is important to note that the accuracy obtained 
by the variable mesh method was about the same as that obtained using constant 
increments with the same number of steps. This indicates that the variable mesh 
procedures do not have a degrading effect when they are used unnecessarily. 

TABLE I 
Problems Used to Test Variable Mesh Method 

Problem 
Differential Integration 
Equation(s) Interval 

Initial 
Value 

Exact 
Solution 

1 y’ = -4oxy -l<x<l 
2 y’ = (2xy)-’ 1 < x < 10’0 
3 Y’ = y/x--(l/x)cos(l/x) -1 < x < -0.01 
4 y’ = -exp(x) y O<X<S 
5 y’= -y O<x<lO 
6 y’=y O<x<lO 
7 y’ = -y/z o<x<s 

2’ = -z 
8 Y’ = Y(Y/z + 1) o<x<s 

2’ = y 
9 y’ = yyz - 40.2 -l<x<l 

2’ = y 
10 y’ = -2(y + 2) O<x<lOO 

z’ = y 
11 y’ = -exp(-x) - 100~ 0 <X Q 1.5 

z’ = -1002 
12 y’ = -z/x’ -1 < x < -0.01 

z’ = y 

exp(-10) 
0 

sin(l) 
exp(-1) 

1 
1 

exp(- 1) 
1 

-exp(- 1) 
exP(-1) 
40 exp( - 10) 
exp( - 10) 

0 

2 
. 

cos(l)isin(l) 
sin(l) 

exp(l0 - 20x9) 
din(x) 
x sin(1 Ix) 
expl--exPWl 
exp(-x) 
exfix) 
m+-exp(x)l 
exp( - x) 
--evb - =P(x)I 
expl-exrW1 
-40x exp(l0 - 20x*) 
exp(l0 - 20x3 
-2 exp(-x) sin(x) 
exp( - x)[sin(x) + cos(x)] 
expf -x) + exp( - 100x) 
expf - 100x) 
sin(l/x) - (l/x) cos(l/x) 
x sin(1 /x) 

Each equation was solved on the IBM System 360 using single precision starting 
values and double precision floating point operations to advance the solution. 
Values of 6, the target relative truncation error, ranging from 1O-s to 10-l were 
used for each equation. The accuracy obtained was roughly proportionate to the 
values of S specified. It was noted that the step lengths were limited almost entirely 
by the truncation error for the smaller values of 8 with the stability/convergence 
criterion becoming of increasing importance with increasing 6. 

Some of these problems, 1,9, and 12, were used in comparing the new algorithm 
with other fourth order numerical methods which also permit some variability in 
the mesh increments. The other methods used were the standard fourth 
order Runge-Kutta method, the Nordsieck method, and the basic Adams- 
Bashforth/Adams-Moulton method, allowing doubling and halving of the incre- 
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ments with the latter. As indicated below, the new method proved superior to the 
other methods for these problems. 

Since the Runge-Kutta method requires four derivative evaluations per step 
while the others were used with only two evaluations per step, half as many steps 
were used with the Runge-Kutta method as with the other three. For this method 
the step sizes were obtained by linear interpolation of an input table, reapplying 
the method with different tables until no improvement could be obtained. 

The Nordsieck method permits increasing (or decreasing) the step size by a 
factor B (or l/O). The test problems used in the present study were solved with 
8 = 2, the value emphasized in [3] where the symbol “/3” is used for this factor, 
and also with smaller values to permit more gradual varying of the increments. 
In addition, Nordsieck’s interval control mechanism requires a parameter “e” 
used in a manner to imply a target error 19--~. For each value of 6, the problems 
used here were solved with several values of e, seeking one which produced the 
number of steps commensurate with the number used by the other methods. 
However, for 9 = 2, the Nordsieck method used too many steps even when e was 
reduced to unity. (In fact, considerable difficulty was encountered in trying to 
locate values of 0 which were usable in this sense. Successful choices are indicated 
in Table II.) It is also noted here that it was not necessary to use Nordsieck’s 
starting procedure for the test problems since all the required initial information 
was available. 

TABLE II 

Comparison of Relative Error 

Problem Variable Mesh Adams RungsKutta Nordsieck 

1 1.5 x IO-’ 2.3 x lo-* 2.8 x lo-% 3.0 x 10-J@ = 1.01) 
9 1.8 x 1O-3 6.0 x 1O-3 5.2 x 10-a 1.7 x lo-‘(8 = 1.01) 

12 2.0 x lo-” 5.5 x 10-z 1.0 x 10-l 6.5 x 10-l (0 = 1.5) 

For Problem 1, the absolute value of the relative error in the solution obtained 
by each of the four methods is shown in Fig. 4. For this problem, the entries in 
Table II are the areas under the curves of Fig. 4. For the other two problems, the 
entries in Table II reflect alternative measures of relative error which are more 
appropriate for the numerical solutions obtained for those two systems of equa- 
tions. As can be seen from the table, the new variable mesh method gave the best 
performance; and the basic Adams method, augmented with interpolation proce- 
dures to permit doubling and halving, also did considerably better than the other 
two methods. 
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FIG. 4. Relative errors for Problem 1. 

7. AN APPLICATION: HEAT TRANSFER TO SUPERCRITICAL HYDROGEN 

The numerical method developed in the previous sections has been applied to a 
problem of heat transfer for fully developed turbulent flow of a supercritical fluid 
with variable properties in a smooth tube. This problem was first formulated by 
Deissler [I I] who established the solution for the case of water. The results given 
here arc for the case of hydrogen-an important problem in the regenerative 
cooling process of liquid rocket engines. 
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Two first order simultaneous ordinary differential equations arise for dimension- 
less velocity and temperature parameters, u and t, with the independent variable 
being a dimensionless wall-distance parameter x. Near the wall, 0 < x < Z, the 
following equations apply: 

(18) du -= ak 1 iE+f-li m%x [l - exp (- m*zb)]\Y 

dt -= -L 
‘ix f . W’,,, 

+ k 2 m%x [ 1 - exp (- -y;PO)] 1-I (19) 
0 

with 
u(0) = t(0) = 0. 

Here, p, p, C, , K, and P, are the density, viscosity, specific heat, thermal conduc 
tivity, and Prandtl number, respectively, with the subscript “0” indicating the 

I%. 5. Velocity parameter versus wall-distance panrmeter. 
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values at the wall temperature T,, . (Temperature is related to the dimensionless 
temperature parameter t by the equation T = T,,(l - pt), where fl is a dimension- 
less heat-transfer parameter.) The empirical constant m was taken as 0.124. 

In the turbulent core, X < x < xL , Eqs. (18) and (19) are replaced by the equa- 
tions 

and 

dt -=- 
dx 

(20) 

W) 

where K is an empirical constant taken as 0.36 (see [I I]). 

FIG. 6. Temperature parameter versus wall-diitance parameter. 
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Starting values were obtained by the procedure outlined in the introduction. 
Because the derivative du/dx appears implicitly in Eq. (20), successive substitutions 
were used for its evaluation. With only that one additional requirement, the vari- 
able mesh method was applied exactly as recommended in the preceding sections. 
The results are given in Figs. 5 and 6. These results are for a wall temperature of 
116O”R and a pressure of 1000 pounds per square inch, with X taken as 26. Note in 
Fig. 6 that the profile of the temperature parameter I reaches a plateau for the 
higher values of B. This is due to the fact that the temperature T was not permitted 
to decrease below the critical temperature for hydrogen (36”R). 

The variable mesh method proved remarkably efficient for these integrations. 
For each value of p, the integration of the equations out to x, = 105 was repeated 
for three specitled values of the relative truncation error 1,0.01,0.001, and 0.0001. 
Even though the initial step sires for these fifteen cases ranged from 0.003 to 3.9, 
never more than 39 steps were required for 6 = 0.01,53 for 8 = 0.001, and 74 for 
6 = O.oool. 
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